TY - JOUR
T1 - Single-Crystalline All-Oxide α–γ–β Heterostructures for Deep-Ultraviolet Photodetection
AU - Li, Kuang-Hui
AU - Kang, Chun Hong
AU - Min, Jung-Hong
AU - Alfaraj, Nasir
AU - Liang, Jian-Wei
AU - Braic, Laurentiu
AU - Guo, Zaibing
AU - Hedhili, Mohamed N.
AU - Ng, Tien Khee
AU - Ooi, Boon S.
N1 - KAUST Repository Item: Exported on 2020-12-23
Acknowledged KAUST grant number(s): BAS/1/1614-01-01
Acknowledgements: The authors acknowledge receipt of KAUST baseline funding (BAS/1/1614-01-01). T.K.N. and B.S.O. gratefully acknowledge funding from the King Abdulaziz City for Science and Technology (KACST) grant no. KACST TIC R2-FP-008.
PY - 2020/11/17
Y1 - 2020/11/17
N2 - Recent advancements in gallium oxide (Ga2O3)-based heterostructures have allowed optoelectronic devices to be used extensively in the fields of power electronics and deep-ultraviolet photodetection. While most previous research has involved realizing single-crystalline Ga2O3 layers on native substrates for high conductivity and visible-light transparency, presented and investigated herein is a single-crystalline β-Ga2O3 layer grown on an α-Al2O3 substrate through an interfacial γ-In2O3 layer. The single-crystalline transparent conductive oxide layer made of wafer-scalable γ-In2O3 provides high carrier transport, visible-light transparency, and antioxidation properties that are critical for realizing vertically oriented heterostructures for transparent oxide photonic platforms. Physical characterization based on X-ray diffraction and high-resolution transmission electron microscopy imaging confirms the single-crystalline nature of the grown films and the crystallographic orientation relationships among the monoclinic β-Ga2O3, cubic γ-In2O3, and trigonal α-Al2O3, while the elemental composition and sharp interfaces across the heterostructure are confirmed by Rutherford backscattering spectrometry. Furthermore, the energy-band offsets are determined by X-ray photoelectron spectroscopy at the β-Ga2O3/γ-In2O3 interface, elucidating a type-II heterojunction with conduction- and valence-band offsets of 0.16 and 1.38 eV, respectively. Based on the single-crystalline β-Ga2O3/γ-In2O3/α-Al2O3 all-oxide heterostructure, a vertically oriented DUV photodetector is fabricated that exhibits a high photoresponsivity of 94.3 A/W, an external quantum efficiency of 4.6 × 104%, and a specific detectivity of 3.09 × 1012 Jones at 250 nm. The present demonstration lays a strong foundation for and paves the way to future all-oxide-based transparent photonic platforms.
AB - Recent advancements in gallium oxide (Ga2O3)-based heterostructures have allowed optoelectronic devices to be used extensively in the fields of power electronics and deep-ultraviolet photodetection. While most previous research has involved realizing single-crystalline Ga2O3 layers on native substrates for high conductivity and visible-light transparency, presented and investigated herein is a single-crystalline β-Ga2O3 layer grown on an α-Al2O3 substrate through an interfacial γ-In2O3 layer. The single-crystalline transparent conductive oxide layer made of wafer-scalable γ-In2O3 provides high carrier transport, visible-light transparency, and antioxidation properties that are critical for realizing vertically oriented heterostructures for transparent oxide photonic platforms. Physical characterization based on X-ray diffraction and high-resolution transmission electron microscopy imaging confirms the single-crystalline nature of the grown films and the crystallographic orientation relationships among the monoclinic β-Ga2O3, cubic γ-In2O3, and trigonal α-Al2O3, while the elemental composition and sharp interfaces across the heterostructure are confirmed by Rutherford backscattering spectrometry. Furthermore, the energy-band offsets are determined by X-ray photoelectron spectroscopy at the β-Ga2O3/γ-In2O3 interface, elucidating a type-II heterojunction with conduction- and valence-band offsets of 0.16 and 1.38 eV, respectively. Based on the single-crystalline β-Ga2O3/γ-In2O3/α-Al2O3 all-oxide heterostructure, a vertically oriented DUV photodetector is fabricated that exhibits a high photoresponsivity of 94.3 A/W, an external quantum efficiency of 4.6 × 104%, and a specific detectivity of 3.09 × 1012 Jones at 250 nm. The present demonstration lays a strong foundation for and paves the way to future all-oxide-based transparent photonic platforms.
UR - http://hdl.handle.net/10754/666051
UR - https://pubs.acs.org/doi/10.1021/acsami.0c15398
UR - http://www.scopus.com/inward/record.url?scp=85096594656&partnerID=8YFLogxK
U2 - 10.1021/acsami.0c15398
DO - 10.1021/acsami.0c15398
M3 - Article
C2 - 33203211
SN - 1944-8244
JO - ACS Applied Materials & Interfaces
JF - ACS Applied Materials & Interfaces
ER -