Abstract
We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.
Original language | English (US) |
---|---|
Pages (from-to) | 4393-4399 |
Number of pages | 7 |
Journal | Nano Letters |
Volume | 11 |
Issue number | 10 |
DOIs | |
State | Published - Oct 12 2011 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: We deeply appreciate the valuable technical discussion with Professor Frank Register of the University of Texas at Austin, useful logistic support by Kelly Rader, and generous baseline research funding from King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- Bioengineering
- General Materials Science
- General Chemistry
- Mechanical Engineering
- Condensed Matter Physics