Shock tube measurements of the rate constants for seven large alkanes+OH

Jihad Badra, Ahmed Elsaid Elwardani, Aamir Farooq

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.
Original languageEnglish (US)
Pages (from-to)189-196
Number of pages8
JournalProceedings of the Combustion Institute
Volume35
Issue number1
DOIs
StatePublished - 2015

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We would like to acknowledge the funding support from Saudi Aramco under the FUEL-COM program and by the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'Shock tube measurements of the rate constants for seven large alkanes+OH'. Together they form a unique fingerprint.

Cite this