TY - GEN
T1 - Shape analysis with multivariate tensor-based morphometry and holomorphic differentials
AU - Wang, Yalin
AU - Chan, Tony F.
AU - Toga, Arthur W.
AU - Thompson, Paul M.
PY - 2009
Y1 - 2009
N2 - In this paper, we propose multivariate tensor-based surface morphometry, a new method for surface analysis, using holomorphic differentials; we also apply it to study brain anatomy. Differential forms provide a natural way to parameterize 3D surfaces, but the multivariate statistics of the resulting surface metrics have not previously been investigated. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We present the canonical holomorphic one-forms with improved numerical accuracy and computational efficiency. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer's Disease (AD; 12 subjects), lateral ventricular surface morphometry in HIV/AIDS (11 subjects) and biomarkers in lateral ventricles in HIV/AIDS (11 subjects). Experimental results demonstrated that our method powerfully detected brain surface abnormalities. Multivariate statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.
AB - In this paper, we propose multivariate tensor-based surface morphometry, a new method for surface analysis, using holomorphic differentials; we also apply it to study brain anatomy. Differential forms provide a natural way to parameterize 3D surfaces, but the multivariate statistics of the resulting surface metrics have not previously been investigated. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We present the canonical holomorphic one-forms with improved numerical accuracy and computational efficiency. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer's Disease (AD; 12 subjects), lateral ventricular surface morphometry in HIV/AIDS (11 subjects) and biomarkers in lateral ventricles in HIV/AIDS (11 subjects). Experimental results demonstrated that our method powerfully detected brain surface abnormalities. Multivariate statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.
UR - http://www.scopus.com/inward/record.url?scp=77953187310&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2009.5459422
DO - 10.1109/ICCV.2009.5459422
M3 - Conference contribution
AN - SCOPUS:77953187310
SN - 9781424444205
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 2349
EP - 2356
BT - 2009 IEEE 12th International Conference on Computer Vision, ICCV 2009
T2 - 12th International Conference on Computer Vision, ICCV 2009
Y2 - 29 September 2009 through 2 October 2009
ER -