Shallow Seafloor Sediments: Density and Shear Wave Velocity

Marisol Salva Ramirez, Junghee Park, Marco Terzariol, Jiming Jiang, Carlos Santamarina

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Near-surface seafloor properties affect offshore mining and infrastructure engineering. Shallow seafloor sediments experience extremely low effective stress, and consequently, these sediments exhibit very low in-situ density, shear wave velocity, and shear stiffness. We combined data extracted from the literature with new laboratory and field results to develop a comprehensive understanding of shallow seafloor sediments. First, we explored the sediment-dependent self-compaction characteristics starting with the asymptotic void ratio at the interface between the water column and the sediment column. The asymptotic void ratio depends on the particle size and shape in coarse-grained sediments and on mineralogy and pore fluid chemistry in fine-grained clayey sediments; overall, the asymptotic void ratio correlates with the sediment-specific surface and compressibility. Second, we developed a fork-type insertion probe to measure shear wave velocity profiles with depth. Detailed data analyses confirm the prevalent role of effective stress on shear wave velocity Vs=α(σ′m/kPa)β, and the inverse relationship between α and β parameters reveals that electrical interactions alter the velocity profile only in very high specific surface area sediments at very low effective stress and shows that ray bending affects the computed velocities only in the upper few centimeters (for the probe geometry used in this study). Probe insertion causes excess pore fluid pressure and effective stress changes; the ensuing time-dependent diffusion detected through shear wave velocity changes can be analyzed to estimate the coefficient of consolidation. Shear wave velocity profiles and velocity transients after insertion provide valuable information for sediment preclassification and engineering design.
Original languageEnglish (US)
JournalJournal of Geotechnical and Geoenvironmental Engineering
Issue number5
StatePublished - Feb 28 2023

Bibliographical note

KAUST Repository Item: Exported on 2023-03-07
Acknowledgements: The closed-form solution for the ray path was originally derived by M. Cesare and J. C. Santamarina. Support for this research was provided by the KAUST Endowment at King Abdullah University of Science and Technology. Gabrielle E. Abelskamp edited the manuscript.

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • General Environmental Science


Dive into the research topics of 'Shallow Seafloor Sediments: Density and Shear Wave Velocity'. Together they form a unique fingerprint.

Cite this