Sequential constant size compressors for reinforcement learning

Linus Gisslén, Matt Luciw, Vincent Graziano, Jürgen Schmidhuber

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Traditional Reinforcement Learning methods are insufficient for AGIs who must be able to learn to deal with Partially Observable Markov Decision Processes. We investigate a novel method for dealing with this problem: standard RL techniques using as input the hidden layer output of a Sequential Constant-Size Compressor (SCSC). The SCSC takes the form of a sequential Recurrent Auto-Associative Memory, trained through standard back-propagation. Results illustrate the feasibility of this approach - this system learns to deal with high-dimensional visual observations (up to 640 pixels) in partially observable environments where there are long time lags (up to 12 steps) between relevant sensory information and necessary action. © 2011 Springer-Verlag Berlin Heidelberg.
Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pages31-40
Number of pages10
DOIs
StatePublished - Aug 11 2011
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-14

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Sequential constant size compressors for reinforcement learning'. Together they form a unique fingerprint.

Cite this