Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach

María del Pilar Salas-Zárate, José Medina-Moreira, Katty Lagos-Ortiz, Harry Luna-Aveiga, Miguel Angel Rodriguez-Garcia, Rafael Valencia-García

Research output: Contribution to journalArticlepeer-review

110 Scopus citations


In recent years, some methods of sentiment analysis have been developed for the health domain; however, the diabetes domain has not been explored yet. In addition, there is a lack of approaches that analyze the positive or negative orientation of each aspect contained in a document (a review, a piece of news, and a tweet, among others). Based on this understanding, we propose an aspect-level sentiment analysis method based on ontologies in the diabetes domain. The sentiment of the aspects is calculated by considering the words around the aspect which are obtained through N-gram methods (N-gram after, N-gram before, and N-gram around). To evaluate the effectiveness of our method, we obtained a corpus from Twitter, which has been manually labelled at aspect level as positive, negative, or neutral. The experimental results show that the best result was obtained through the N-gram around method with a precision of 81.93%, a recall of 81.13%, and an -measure of 81.24%.
Original languageEnglish (US)
Pages (from-to)1-9
Number of pages9
JournalComputational and Mathematical Methods in Medicine
StatePublished - Feb 19 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work has been funded by the Universidad de Guayaquil (Ecuador) through the project entitled “Tecnologías Inteligentes para la Autogestión de la Salud.” María del Pilar Salas-Zárate is supported by the National Council of Science and Technology (CONACYT), the Public Education Secretary (SEP), and the Mexican Government. Finally, this work has been also partially supported by the Spanish Ministry of Economy and Competitiveness and the European Commission (FEDER/ERDF) through project KBS4FIA (TIN2016-76323-R).


Dive into the research topics of 'Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach'. Together they form a unique fingerprint.

Cite this