Sensorless torque control of ac induction motors

Haithem Abu-Rub, Jaroslaw Guzinski, Shehab Ahmed, Hamid A. Toliyat

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


The sensorless version of the nonlinear control method will be presented in this paper. Torque control at different operating points will be demonstrated. A fast dynamic torque response will be presented for different types of loads. These loads will be changing linearly or nonlinearly with speed or can be applied as an abrupt step. Nonlinear feedback control of the induction motor is then used to obtain the solutions for these various conditions. A Voltage source inverter is used to feed the induction motor. The command values to the PWM algorithm are the stator current and frequency. A slip PI controller is used to develop the stator current frequency. This method makes it possible to avoid the calculation of the rotor angular speed. Thus, this paper introduces a significant innovation in the electrical drive system based on the nonlinear control theory of induction motors. Comprehensive simulation results corroborating the developed theory will be presented. The implementation of the system on a low cost, fixed point DSP is expected to be included in the final draft of this paper.
Original languageEnglish (US)
Title of host publicationIECON Proceedings (Industrial Electronics Conference)
StatePublished - Dec 1 2001
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2019-11-27


Dive into the research topics of 'Sensorless torque control of ac induction motors'. Together they form a unique fingerprint.

Cite this