Abstract
We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in practice. © 2013 American Statistical Association.
Original language | English (US) |
---|---|
Pages (from-to) | 1090-1104 |
Number of pages | 15 |
Journal | Journal of the American Statistical Association |
Volume | 108 |
Issue number | 503 |
DOIs | |
State | Published - Sep 2013 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: This research was partially supported by NSF grants DMS-0906341, DMS-1007504, and DMS-1100492; NINDS grant R01-NS073671; and by Award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty