Abstract
We study the simultaneous semi-classical and adiabatic asymptotics for a class of (weakly) nonlinear Schrödinger equations with a fast periodic potential and a slowly varying confinement potential. A rigorous two-scale WKB-analysis, locally in time, is performed. The main nonlinear phenomenon is a modification of the Berry phase.
Original language | English (US) |
---|---|
Pages (from-to) | 343-375 |
Number of pages | 33 |
Journal | Journal of Statistical Physics |
Volume | 117 |
Issue number | 1-2 |
DOIs | |
State | Published - Oct 2004 |
Externally published | Yes |
Bibliographical note
Funding Information:2000 Mathematics Subject Classification: 81Q20, 34E13, 34E20, 35Q55. This work was partially supported by the EU network HYKE (Contract No. HPRN-CT-2002-00282), the Wittgenstein Award 2000 of P. A. M. (funded by the Austrian research fund FWF), and the Wissenschaftskolleg Differentialgleichungen (FWF Project No. W8). 1IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes France; e-mail: [email protected] 2Institut für Mathematik der Universität Wien Nordbergstraße 15, A-1090 Vienna, Austria; e-mail: [email protected]; e-mail: [email protected] 3On leave from MAB, Université Bordeaux 1.
Keywords
- Bloch eigenvalue problem
- Bose-Einstein condensate
- Nonlinear Schrödinger equation
- WKB-asymptotics
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics