Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

Jian Zhou (Inventor), Erqiang Li (Inventor), Gilles Lubineau (Inventor), Sigurdur T. Thoroddsen (Inventor), Matthieu Mulle (Inventor)

Research output: Patent

Abstract

A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.
Original languageEnglish (US)
Patent numberWO 2016087945 A2
StatePublished - Jun 9 2016

Bibliographical note

KAUST Repository Item: Exported on 2019-02-13

Fingerprint

Dive into the research topics of 'Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles'. Together they form a unique fingerprint.

Cite this