TY - JOUR
T1 - Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation
AU - Wang, Yuchao
AU - Zhang, Lianbin
AU - Wang, Peng
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/2/8
Y1 - 2016/2/8
N2 - Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.
AB - Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.
UR - http://hdl.handle.net/10754/594969
UR - http://pubs.acs.org/doi/abs/10.1021/acssuschemeng.5b01274
UR - http://www.scopus.com/inward/record.url?scp=84960076171&partnerID=8YFLogxK
U2 - 10.1021/acssuschemeng.5b01274
DO - 10.1021/acssuschemeng.5b01274
M3 - Article
SN - 2168-0485
VL - 4
SP - 1223
EP - 1230
JO - ACS Sustainable Chemistry & Engineering
JF - ACS Sustainable Chemistry & Engineering
IS - 3
ER -