Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

S. Guldin, P. Docampo, S. Hüttner, P. Kohn, M. Stefik, H. J. Snaith, U. Wiesner, U. Steiner

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

One way to successfully enhance light harvesting of excitonic solar cells is the integration of optical elements that increase the photon path length in the light absorbing layer. Device architectures which incorporate structural order in form of one- or three-dimensional refractive index lattices can lead to the localization of light in specific parts of the spectrum, while retaining the cell's transparency in others. Herein, we present two routes for the integration of photonic crystals (PCs) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block copolymers, resulting in a double layer dye-sensitized solar cell with increased light absorption from the 3D PC element. An alternative route is based on the fact that the refractive index of the mesoporous layer can be finely tuned by the interplay between block copolymer self-assembly and hydrolytic TiO2 sol-gel chemistry. Alternating deposition of high and low refractive index layers enables the integration of a 1D PC into a DSC.
Original languageEnglish (US)
Title of host publicationNext Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II
PublisherSPIE-Intl Soc Optical Eng
ISBN (Print)9780819487216
DOIs
StatePublished - Sep 20 2011
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST), the EPSRC (EP/F056702/1 and EP/F065884/1), the Department of Energy (DE-FG02 87ER45298) through the Cornell Fuel Cell Institute (CFCI) and the National Science Foundation (DMR-0605856).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells'. Together they form a unique fingerprint.

Cite this