Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications

Jiakai Liu, Xiaopeng Zheng, Omar F. Mohammed, Osman Bakr

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Conspectus Over the past decade, the impressive development of metal halide perovskites (MHPs) has made them leading candidates for applications in photovoltaics (PVs), X-ray scintillators, and light-emitting diodes (LEDs). Constructing MHP nanocrystals (NCs) with promising optoelectronic properties using a low-cost approach is critical to realizing their commercial potential. Self-assembly and regrowth techniques provide a simple and powerful “bottom-up” platform for controlling the structure, shape, and dimensionality of MHP NCs. The soft ionic nature of MHP NCs, in conjunction with their low formation energy, rapid anion exchange, and ease of ion migration, enables the rearrangement of their overall appearance via self-assembly or regrowth. Because of their low formation energy and highly dynamic surface ligands, MHP NCs have a higher propensity to regrow than conventional hard-lattice NCs. Moreover, their self-assembly and regrowth can be achieved simultaneously. The self-assembly of NCs into close-packed, long-range-ordered mesostructures provides a platform for modulating their electronic properties (e.g., conductivity and carrier mobility). Moreover, assembled MHP NCs exhibit collective properties (e.g., superfluorescence, renormalized emission, longer phase coherence times, and long exciton diffusion lengths) that can translate into dramatic improvements in device performance. Further regrowth into fused MHP nanostructures with the removal of ligand barriers between NCs could facilitate charge carrier transport, eliminate surface point defects, and enhance stability against moisture, light, and electron-beam irradiation. However, the synthesis strategies, diversity and complexity of structures, and optoelectronic applications that emanate from the self-assembly and regrowth of MHPs have not yet received much attention. Consequently, a comprehensive understanding of the design principles of self-assembled and fused MHP nanostructures will fuel further advances in their optoelectronic applications. In this Account, we review the latest developments in the self-assembly and regrowth of MHP NCs. We begin with a survey of the mechanisms, driving forces, and techniques for controlling MHP NC self-assembly. We then explore the phase transition of fused MHP nanostructures at the atomic level, delving into the mechanisms of facet-directed connections and the kinetics of their shape-modulation behavior, which have been elucidated with the aid of high-resolution transmission electron microscopy (HRTEM) and first-principles density functional theory calculations of surface energies. We further outline the applications of assembled and fused nanostructures. Finally, we conclude with a perspective on current challenges and future directions in the field of MHP.
Original languageEnglish (US)
JournalAccounts of Chemical Research
DOIs
StatePublished - Jan 16 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-01-19

ASJC Scopus subject areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications'. Together they form a unique fingerprint.

Cite this