TY - JOUR
T1 - Seismic fragility assessment of load-bearing soft-brick unreinforced masonry piers
AU - Vemuri, Jayaprakash
AU - Aquib, Tariq Anwar
AU - Subramaniam, K. V.L.
N1 - KAUST Repository Item: Exported on 2022-09-14
PY - 2022/6/22
Y1 - 2022/6/22
N2 - Unreinforced masonry (URM) made with soft bricks comprises a large percentage of the building stock in developing countries. However, the poor performance of URM piers during earthquakes has led to renewed interest in understanding their behavior under lateral loads. Little experimental data is available on the seismic response, analysis, and design of URMs made of soft bricks. In this study, the micro-modeling technique is used to simulate the in-plane behavior of load-bearing, soft-brick URM piers. The parameters required in the constitutive models are obtained from material tests and used to develop a calibrated numerical model of the URM piers. Piers with various aspect ratios subjected to various axial stresses are numerically modeled to obtain monotonic and cyclic responses, and their critical displacement limit states are identified. Changes in the failure modes of masonry piers with variations in the aspect ratio and axial stress are established. Load-bearing piers exhibit three distinct failure modes: bed sliding, diagonal shear cracking, and flexure, depending on the aspect ratio and axial stress. The seismic fragility of each pier failure type is examined using nonlinear time history analyses. The results show that bed-sliding piers collapse at extremely low PGA levels. Piers failing through diagonal shear cracking also fail at low PGA levels. Flexural piers can resist seismic forces up to a slightly higher PGA level and thus are the last to collapse. The results also indicate that the effect of uncertainty in ground motions is more significant than the effect of variability in the masonry pier capacities.
AB - Unreinforced masonry (URM) made with soft bricks comprises a large percentage of the building stock in developing countries. However, the poor performance of URM piers during earthquakes has led to renewed interest in understanding their behavior under lateral loads. Little experimental data is available on the seismic response, analysis, and design of URMs made of soft bricks. In this study, the micro-modeling technique is used to simulate the in-plane behavior of load-bearing, soft-brick URM piers. The parameters required in the constitutive models are obtained from material tests and used to develop a calibrated numerical model of the URM piers. Piers with various aspect ratios subjected to various axial stresses are numerically modeled to obtain monotonic and cyclic responses, and their critical displacement limit states are identified. Changes in the failure modes of masonry piers with variations in the aspect ratio and axial stress are established. Load-bearing piers exhibit three distinct failure modes: bed sliding, diagonal shear cracking, and flexure, depending on the aspect ratio and axial stress. The seismic fragility of each pier failure type is examined using nonlinear time history analyses. The results show that bed-sliding piers collapse at extremely low PGA levels. Piers failing through diagonal shear cracking also fail at low PGA levels. Flexural piers can resist seismic forces up to a slightly higher PGA level and thus are the last to collapse. The results also indicate that the effect of uncertainty in ground motions is more significant than the effect of variability in the masonry pier capacities.
UR - http://hdl.handle.net/10754/679972
UR - https://linkinghub.elsevier.com/retrieve/pii/S2666449622000317
UR - http://www.scopus.com/inward/record.url?scp=85134692081&partnerID=8YFLogxK
U2 - 10.1016/j.jnlssr.2022.05.001
DO - 10.1016/j.jnlssr.2022.05.001
M3 - Article
SN - 2666-4496
VL - 3
SP - 277
EP - 287
JO - Journal of Safety Science and Resilience
JF - Journal of Safety Science and Resilience
IS - 4
ER -