Abstract
Anomaly Detection is a challenging task due to the limited knowledge about possible anomalies. This issue can be tackled by modeling anomalies through domain expertise or collecting sufficient anomalous data. However, some domains, such as monitoring systems, require detectors that are capable of detecting any potential alteration in the observed phenomenon. Hereby we propose a tool to generate anomalies as a statistical deviation from the characterization of the signal representing the normal behavior. Two families of deviation models are presented, and the effectiveness of the tool is proven using well-known unsupervised detectors. The effects of a possible intermediate data compression stage on the detection capabilities are also considered.
Original language | English (US) |
---|---|
Title of host publication | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728163277 |
DOIs | |
State | Published - 2023 |
Event | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece Duration: Jun 4 2023 → Jun 10 2023 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2023-June |
ISSN (Print) | 1520-6149 |
Conference
Conference | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 |
---|---|
Country/Territory | Greece |
City | Rhodes Island |
Period | 06/4/23 → 06/10/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- anomaly sets
- lossy compression
- Outlier detection
- principal component analysis
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering