Scalable neural networks for board games

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations


Learning to solve small instances of a problem should help in solving large instances. Unfortunately, most neural network architectures do not exhibit this form of scalability. Our Multi-Dimensional Recurrent LSTM Networks, however, show a high degree of scalability, as we empirically show in the domain of flexible-size board games. This allows them to be trained from scratch up to the level of human beginners, without using domain knowledge. © 2009 Springer Berlin Heidelberg.
Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Number of pages10
StatePublished - Nov 19 2009
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-14

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Scalable neural networks for board games'. Together they form a unique fingerprint.

Cite this