Scalable and Secure Architecture for Distributed IoT Systems

Najmeddine Dhieb, Hakim Ghazzai, Hichem Besbes, Yehia Massoud

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Internet-of-things (IoT) is perpetually revolutionizing our daily life and rapidly transforming physical objects into an ubiquitous connected ecosystem. Due to their massive deployment and moderate security levels, those devices face a lot of security, management, and control challenges. Their classical centralized architecture is still cloaking vulnerabilities and anomalies that can be exploited by hackers for spying, eavesdropping, and taking control of the network. In this paper, we propose to improve the IoT architecture with additional security features using Artificial Intelligence (AI) and blockchain technology. We propose a novel architecture based on permissioned blockchain technology in order to build a scalable and decentralized end-to-end secure IoT system. Furthermore, we enhance the IoT system security with an AI-component at the gateway level to detect and classify suspected activities, malware, and cyber-attacks using machine learning techniques. Simulations and practical implementation show that the proposed architecture delivers high performance against cyber-attacks.
Original languageEnglish (US)
Title of host publication2020 IEEE Technology and Engineering Management Conference, TEMSCON 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781728142241
DOIs
StatePublished - Jun 1 2020
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

Fingerprint

Dive into the research topics of 'Scalable and Secure Architecture for Distributed IoT Systems'. Together they form a unique fingerprint.

Cite this