Abstract
2D ferroelectric material has emerged as an attractive building block for high-density data storage nanodevices. Although monolayer van der Waals ferroelectrics have been theoretically predicted, a key experimental breakthrough for such calculations is still not realized. Here, hexagonally stacking α-InSe nanoflake, a rarely studied van der Waals polymorph, is reported to exhibit out-of-plane (OOP) and in-plane (IP) ferroelectricity at room temperature. Ferroelectric multidomain states in a hexagonal α-InSe nanoflake with uniform thickness can survive to 6 nm. Most strikingly, the electric-field-induced polarization switching and hysteresis loop are, respectively, observed down to the bilayer and monolayer (≈1.2 nm) thicknesses, which designates it as the thinnest layered ferroelectric and verifies the corresponding theoretical calculation. In addition, two types of ferroelectric nanodevices employing the OOP and IP polarizations in 2H α-InSe are developed, which are applicable for nonvolatile memories and heterostructure-based nanoelectronics/optoelectronics.
Original language | English (US) |
---|---|
Pages (from-to) | 1803738 |
Journal | Advanced Functional Materials |
Volume | 28 |
Issue number | 50 |
DOIs | |
State | Published - Oct 21 2018 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): CRF-2015-2634-CRG4, CRF-2016-2996-CRG5
Acknowledgements: F.X., W.H., and K.-C.L. contributed equally to this work. The research presented here was supported by King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: CRF-2015-2634-CRG4, and CRF-2016-2996-CRG5. W.J.H thanks the support from the “Hundred Talents Program” of the Chinese Academy of Sciences. W.-H.C. acknowledges the support from the Ministry of Science and Technology (MOST) of Taiwan (105-2119-M-009-014-MY3, 107-2112-M-009-024-MY3) and the Center for Emergent Functional Matter Science (CEFMS) of NCTU.