RoboSCell: An automated single cell arraying and analysis instrument

Kelly Sakaki, Ian G. Foulds, William Liu, Nikolai Dechev, Robert Douglas Burke, Edward Park

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell interactions and cell structure. The methods of single cell analysis require mechanical resolution and accuracy that is not possible using conventional techniques. Robotic instruments and novel microdevices can achieve higher throughput and repeatability; however, the development of such instrumentation is a formidable task. A void exists in the state-of-the-art for automated analysis of single cells. With the increase in interest in single cell analyses in stem cell and cancer research the ability to facilitate higher throughput and repeatable procedures is necessary. In this paper, a high-throughput, single cell microarray-based robotic instrument, called the RoboSCell, is described. The proposed instrument employs a partially transparent single cell microarray (SCM) integrated with a robotic biomanipulator for in vitro analyses of live single cells trapped at the array sites. Cells, labeled with immunomagnetic particles, are captured at the array sites by channeling magnetic fields through encapsulated permalloy channels in the SCM. The RoboSCell is capable of systematically scanning the captured cells temporarily immobilized at the array sites and using optical methods to repeatedly measure extracellular and intracellular characteristics over time. The instrument's capabilities are demonstrated by arraying human T lymphocytes and measuring the uptake dynamics of calcein acetoxymethylester-all in a fully automated fashion. © 2009 Springer Science+Business Media, LLC.
Original languageEnglish (US)
Pages (from-to)1317-1330
Number of pages14
JournalBiomedical Microdevices
Volume11
Issue number6
DOIs
StatePublished - Sep 9 2009

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Biomedical Engineering
  • Molecular Biology

Fingerprint

Dive into the research topics of 'RoboSCell: An automated single cell arraying and analysis instrument'. Together they form a unique fingerprint.

Cite this