Abstract
Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.
Original language | English (US) |
---|---|
Pages (from-to) | 252 |
Journal | Journal of Imaging |
Volume | 7 |
Issue number | 12 |
DOIs | |
State | Published - Nov 26 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2022-01-26Acknowledgements: The work is supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2018-06198), Canada Excellence Research Chairs Program, Canada Foundation for Innovation (Grant Nos. 36689 and 342). Section 3: Swiss Federal Institute of Technology of Lausanne (EPFL), the University of Lausanne (UNIL) and the King Abdullah University of Science and Technology (Kaust). Section 5: Sponsored by Australian Research Council projects, Linkage (LP190100505) and Discovery (DP130101205, DP170100131). Section 6: The work was supported by KAIST UP program, BK21+ program, Tomocube, and National Re-search Foundation of Korea (2017M3C1A3013923, 2015R1A3A2066550, 2018K000396). Section 7: The work was supported by the Ministry of Science and Technology, Taiwan (MOST) under the contract numbers: 109-2811-E-003-500, 108-2221-E-003-019-MY3, and 107-2923-E-003-001-MY3. Sections 7 and 9: Supported by the project NeuroPhase (PL-TW/V/5/2018) financed by the National Centre for Research and Development. Section 9: This work has been supported by TEAM TECH/2016-1/4 of Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund; FOTECH-1 project granted by Warsaw University of Technology under the program Excellence Initiative: Research University (ID-UB). Section 10: The work has received funding from the European Union’s Horizon 2020 research programme under grant agreement N◦ 101016726.