Abstract
In this paper we describe a roadmap-based approach for a multi-agent search strategy to clear a building or multi-story environment. This approach utilizes an encoding of the environment in the form of a graph (roadmap) that is used to encode feasible paths through the environment. The roadmap is partitioned into regions, e.g., one per level, and we design region-based search strategies to cover and clear the environment. We can provide certain guarantees within this roadmap-based framework on coverage and the number of agents needed. Our approach can handle complex and realistic environments where many approaches are restricted to simple 2D environments. © 2011 Springer-Verlag.
Original language | English (US) |
---|---|
Title of host publication | Lecture Notes in Computer Science |
Publisher | Springer Nature |
Pages | 340-352 |
Number of pages | 13 |
ISBN (Print) | 9783642250897 |
DOIs | |
State | Published - 2011 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: This research supported in part by NSF awards CRI-0551685, CCF-0833199, CCF-0830753, IIS-096053, IIS-0917266 by THECB NHARP award 000512-0097-2009, byChevron, IBM, Intel, Oracle/Sun and by Award KUS-C1-016-04, made by KingAbdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.