Abstract
Gradient compression is a widely-established remedy to tackle the communication bottleneck in distributed training of large deep neural networks (DNNs). Under the error-feedback framework, Top-k sparsification, sometimes with k as little as 0.1% of the gradient size, enables training to the same model quality as the uncompressed case for a similar iteration count. From the optimization perspective, we find that Top-k is the communication-optimal sparsifier given a per-iteration k element budget. We argue that to further the benefits of gradient sparsification, especially for DNNs, a different perspective is necessary — one that moves from per-iteration optimality to consider optimality for the entire training. We identify that the total error — the sum of the compression errors for all iterations — encapsulates sparsification throughout training. Then, we propose a communication complexity model that minimizes the total error under a communication budget for the entire training. We find that the hard-threshold sparsifier, a variant of the Top-k sparsifier with k determined by a constant hard-threshold, is the optimal sparsifier for this model. Motivated by this, we provide convex and non-convex convergence analyses for the hard-threshold sparsifier with error-feedback. We show that hard-threshold has the same asymptotic convergence and linear speedup property as SGD in both the case, and unlike with Top-k sparsifier, has no impact due to data-heterogeneity. Our diverse experiments on various DNNs and a logistic regression model demonstrate that the hard-threshold sparsifier is more communication-efficient than Top-k. Code is available at https://github.com/sands-lab/rethinking-sparsification.
Original language | English (US) |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
Editors | Marc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan |
Publisher | Neural information processing systems foundation |
Pages | 8133-8146 |
Number of pages | 14 |
ISBN (Electronic) | 9781713845393 |
State | Published - 2021 |
Event | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online Duration: Dec 6 2021 → Dec 14 2021 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 10 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
---|---|
City | Virtual, Online |
Period | 12/6/21 → 12/14/21 |
Bibliographical note
Publisher Copyright:© 2021 Neural information processing systems foundation. All rights reserved.
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing