TY - GEN
T1 - Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency
AU - Abdelhady, Amr Mohamed Abdelaziz
AU - Amin, Osama
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/7/26
Y1 - 2016/7/26
N2 - Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.
AB - Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.
UR - http://hdl.handle.net/10754/621334
UR - http://ieeexplore.ieee.org/document/7510802/
UR - http://www.scopus.com/inward/record.url?scp=84981295748&partnerID=8YFLogxK
U2 - 10.1109/ICC.2016.7510802
DO - 10.1109/ICC.2016.7510802
M3 - Conference contribution
SN - 9781479966646
BT - 2016 IEEE International Conference on Communications (ICC)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -