TY - GEN
T1 - Resource allocation based uplink intercell interference model in multi-carrier networks
AU - Tabassum, Hina
AU - Yilmaz, Ferkan
AU - Dawy, Zaher
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2013/6
Y1 - 2013/6
N2 - Intercell interference (ICI) is a primary cause for performance limitation in emerging wireless cellular systems due to its highly indeterministic nature. In this paper, we derive an analytical statistical model for the uplink ICI in a multiuser multi-carrier cellular network considering the impact of various uncoordinated scheduling schemes on the locations and transmit powers of the interferers. The derived model applies to generic composite fading distributions and provides a useful computational tool to evaluate key performance metrics such as the network ergodic capacity. The derived model is extended to incorporate coordinated scheduling schemes. A study is then presented to quantify the potential performance gains of coordinated over uncoordinated scheduling schemes under various base station coordination scenarios. Numerical results demonstrate that different frequency allocation patterns significantly impact the network performance depending on the coordination among neighboring base stations. The accuracy of the derived analytical expressions is verified via Monte-Carlo simulations. © 2013 IEEE.
AB - Intercell interference (ICI) is a primary cause for performance limitation in emerging wireless cellular systems due to its highly indeterministic nature. In this paper, we derive an analytical statistical model for the uplink ICI in a multiuser multi-carrier cellular network considering the impact of various uncoordinated scheduling schemes on the locations and transmit powers of the interferers. The derived model applies to generic composite fading distributions and provides a useful computational tool to evaluate key performance metrics such as the network ergodic capacity. The derived model is extended to incorporate coordinated scheduling schemes. A study is then presented to quantify the potential performance gains of coordinated over uncoordinated scheduling schemes under various base station coordination scenarios. Numerical results demonstrate that different frequency allocation patterns significantly impact the network performance depending on the coordination among neighboring base stations. The accuracy of the derived analytical expressions is verified via Monte-Carlo simulations. © 2013 IEEE.
UR - http://hdl.handle.net/10754/564723
UR - http://ieeexplore.ieee.org/document/6692737/
UR - http://www.scopus.com/inward/record.url?scp=84893610800&partnerID=8YFLogxK
U2 - 10.1109/VTCSpring.2013.6692737
DO - 10.1109/VTCSpring.2013.6692737
M3 - Conference contribution
SN - 9781467363372
BT - 2013 IEEE 77th Vehicular Technology Conference (VTC Spring)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -