Abstract
The electrical properties and reliability of MOS devices based on high-k dielectrics can be affected when the gate stack is subjected to an annealing process, which can lead to the polycrystallization of the high-k layer. In this work, a Conductive Atomic Force Microscope (C-AFM) has been used to study the nanoscale electrical conduction and reliability of amorphous and polycrystalline HfO2 based gate stacks. The link between the nanoscale properties and the reliability and gate conduction variability of fully processed MOS devices has also been investigated. © 2011 Elsevier B.V. All rights reserved.
Original language | English (US) |
---|---|
Title of host publication | Microelectronic Engineering |
Pages | 1334-1337 |
Number of pages | 4 |
DOIs | |
State | Published - Jul 1 2011 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2021-03-16ASJC Scopus subject areas
- Surfaces, Coatings and Films
- Atomic and Molecular Physics, and Optics
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering
- Condensed Matter Physics