Abstract
© 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. As humans, we regularly associate shape of an object with its built material. In the context of geometric modeling, however, this inter-relation between form and material is rarely explored. In this work, we propose a novel data-driven reforming (i.e.; reshaping) algorithm that adapts an input multi-component model for a target fabrication material. The algorithm adapts both the part geometry and the inter-part topology of the input shape to better align with material-aware fabrication requirements. As output, we produce the reshaped model along with respective part dimensions and inter-part junction specifications. We evaluate our algorithm on a range of man-made models and demonstrate a variety of model reshaping examples focusing only on metal and wooden materials.
Original language | English (US) |
---|---|
Pages (from-to) | 53-64 |
Number of pages | 12 |
Journal | Computer Graphics Forum |
Volume | 34 |
Issue number | 5 |
DOIs | |
State | Published - Aug 10 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: We thank the reviewers for their comments and suggestions for improving the paper; Cristina Amati for help with the chair fabrication. This work was supported in part by University of Bath startup fund BA-FS6SYY, KAUST baseline funding, the ERC Starting Grant SmartGeometry (StG-2013-335373), and Marie Curie CIG.