Reducing breakdown pressure of tight reservoirs via in-situ pulses: Impact of mineralogy

Ayman Al-Nakhli, Saudi Aramco, Tariq Zeeshan, Mohamed Mahmoud, Abdulaziz Abdulraheem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Industrial growth increases the demand for natural gas worldwide, which is considered as one of the cleanest types of fossil fuels and most reliable energy source (BP, 2013). Unconventional gas represent a giant resource of natural gas, however, requires massive fracturing. One of the challenging problem that operators face is the high breakdown pressure for deep and tight reservoirs. Several lost potentials are recorded worldwide due to high breakdown pressure that exceeds pumping limitations or completion rating. Several attempts were tried to reduce the breakdown pressure by cyclic fracturing, low viscosity fracturing fluid, perforations and high pressurization rate. However, even with the existing techniques, still high breakdown pressure present a persistent challenge. Increasing the injection rate of the fluid into the rock corresponded to a lowering of the breakdown pressure. The higher injection rate allows more fluid to enter the shale porosity thus transmitting the injection pressure to more points within the shale formation, which reduces the breakdown pressure. The developed methodology reduces breakdown pressure and enables fracking high stress rocks by increasing the injectivity prior to fracturing. Thermochemical will be injected to create microfractures, improve permeability, and reduce young's modulus of tight reservoirs prior to fracking. By creating microfractures and improving injectivity, the required breakdown pressure will be reduced, and fracturing will be enabled. Moreover, experimental results showed that thermochemical treatment reduces young's modulus of the rock, thus reducing rock stiffness.
Original languageEnglish (US)
Title of host publicationSociety of Petroleum Engineers - SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition 2019, APOG 2019
PublisherSociety of Petroleum Engineers
ISBN (Print)9781613996478
StatePublished - Jan 1 2019
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-20

Fingerprint

Dive into the research topics of 'Reducing breakdown pressure of tight reservoirs via in-situ pulses: Impact of mineralogy'. Together they form a unique fingerprint.

Cite this