Real-time quantification of hydrogen peroxide production in living cells using NiCo2S4@CoS2 heterostructure

Veerappan Mani, Selvaraj Shanthi, Tie Kun Peng, Hsin Yi Lin, Hiroya Ikeda, Yasuhiro Hayakawa, Suru Ponnusamy, Chellamuthu Muthamizhchelvan, Sheng Tung Huang

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The real-time monitoring of hydrogen peroxide (H2O2) production in living cells is of paramount importance; however, the high complexity of biological fluids and low concentrations of in-vivo H2O2 are limiting the sensor's sensitivity and selectivity. Here, we described a carbon cloth (CC) modified nickel cobalt sulfide/cobalt sulfide nanostructured arrays (NiCo2S4@CoS2 NAs) as a highly sensitive and selective electrochemical transducer for tracking endogenous H2O2 production in real-time. A hydrothermal synthetical procedure was adopted to deposit the nanostructured arrays. NiCo2S4, an important class of binary transition metal dichalcogenide holds outstanding electrocatalytic activity thanks to its redox properties, enlarged electrocatalytic sites due to mixed valence states, and high conductivity. The growth of NiCo2S4 in association with cobalt disulfide CoS2 on a 3D conducting backbone leads to the nanostructured arrays. The structure, size of the particles, crystallinity, and composition of the arrays were analyzed by the state-of-the-art high-vacuum surface techniques. The NiCo2S4@CoS2 NAs@CC was found to have excellent electrocatalytic performance to reduce H2O2. The electrode displayed a rapid, sensitive, and durable amperometric sensing characteristics, over a linear range of 12.64 nM–2104 μM. The detection limit was 2 nM (S/N = 3). The sensor was able to quantify the amount of endogenously produced H2O2 released from Raw 264.7 cells. Thus, the binary TMDs based nanostructures have promising potential in live cell biosensing applications.
Original languageEnglish (US)
Pages (from-to)124-130
Number of pages7
JournalSensors and Actuators, B: Chemical
Volume287
DOIs
StatePublished - May 15 2019
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-21

ASJC Scopus subject areas

  • Materials Chemistry
  • Instrumentation
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Real-time quantification of hydrogen peroxide production in living cells using NiCo2S4@CoS2 heterostructure'. Together they form a unique fingerprint.

Cite this