TY - GEN
T1 - Real-time inference for a gamma process model of neural spiking
AU - Carlson, David
AU - Rao, Vinayak
AU - Vogelstein, Joshua
AU - Carin, Lawrence
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-09
PY - 2013/1/1
Y1 - 2013/1/1
N2 - With simultaneous measurements from ever increasing populations of neurons, there is a growing need for sophisticated tools to recover signals from individual neurons. In electrophysiology experiments, this classically proceeds in a two-step process: (i) threshold the waveforms to detect putative spikes and (ii) cluster the waveforms into single units (neurons). We extend previous Bayesian nonparametric models of neural spiking to jointly detect and cluster neurons using a Gamma process model. Importantly, we develop an online approximate inference scheme enabling real-time analysis, with performance exceeding the previous state-of-the-art. Via exploratory data analysis-using data with partial ground truth as well as two novel data sets-we find several features of our model collectively contribute to our improved performance including: (i) accounting for colored noise, (ii) detecting overlapping spikes, (iii) tracking waveform dynamics, and (iv) using multiple channels. We hope to enable novel experiments simultaneously measuring many thousands of neurons and possibly adapting stimuli dynamically to probe ever deeper into the mysteries of the brain.
AB - With simultaneous measurements from ever increasing populations of neurons, there is a growing need for sophisticated tools to recover signals from individual neurons. In electrophysiology experiments, this classically proceeds in a two-step process: (i) threshold the waveforms to detect putative spikes and (ii) cluster the waveforms into single units (neurons). We extend previous Bayesian nonparametric models of neural spiking to jointly detect and cluster neurons using a Gamma process model. Importantly, we develop an online approximate inference scheme enabling real-time analysis, with performance exceeding the previous state-of-the-art. Via exploratory data analysis-using data with partial ground truth as well as two novel data sets-we find several features of our model collectively contribute to our improved performance including: (i) accounting for colored noise, (ii) detecting overlapping spikes, (iii) tracking waveform dynamics, and (iv) using multiple channels. We hope to enable novel experiments simultaneously measuring many thousands of neurons and possibly adapting stimuli dynamically to probe ever deeper into the mysteries of the brain.
UR - http://www.scopus.com/inward/record.url?scp=84898945521&partnerID=8YFLogxK
M3 - Conference contribution
BT - Advances in Neural Information Processing Systems
PB - Neural information processing systems foundation
ER -