Abstract
Near-infrared diffuse optical tomography is a non-invasive photonics-based imaging technology suited to functional brain imaging applications. Recent developments have proved that it is possible to build a compact time-domain diffuse optical tomography system based on silicon photomultipliers (SiPM) detectors. The system presented in this paper was equipped with the same eight SiPM probe-hosted detectors, but was upgraded with six injection fibers to shine the sample at several points. Moreover, an automatic switch was included enabling a complete measurement to be performed in less than one second. Further, the system was provided with a dual-wavelength ( 670 n m and 820 n m ) light source to quantify the oxy- and deoxy-hemoglobin concentration evolution in the tissue. This novel system was challenged against a solid phantom experiment, and two in-vivo tests, namely arm occlusion and motor cortex brain activation. The results show that the tomographic system makes it possible to follow the evolution of brain activation over time with a 1 s -resolution.
Original language | English (US) |
---|---|
Pages (from-to) | 2815 |
Journal | Sensors (Basel, Switzerland) |
Volume | 20 |
Issue number | 10 |
DOIs | |
State | Published - May 21 2020 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This research has received funding from the European Union’s Horizon 2020 Marie Skodowska-Curie Innovative Training Networks (ITN-ETN) programme, under Grant Agreement No. 675332 BitMap.