Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

Ting Ting Chng, Lakshminarayana Polavarapu, Qing Hua Xu, Wei Ji, Hua Chun Zeng

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)5633-5643
Number of pages11
Issue number9
StatePublished - May 3 2011
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors gratefully acknowledge the Economic Development Board, Singapore, and King Abdullah University of Science and Technology, Saudi Arabia, for support of this research. T.T.C. would also like to thank the National University of Singapore for providing her a postgraduate scholarship.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach'. Together they form a unique fingerprint.

Cite this