Abstract
Designing and engineering nanocomposites with tailored physiochemical properties through teaming distinct components is a straightforward strategy to yield multifunctional materials. Here, we describe a rapid, economical, and green one-pot microwave synthetic procedure for the preparation of ternary nanocomposites carbon/polydopamine/Au nanoparticles (C/PDA/AuNPs; C = carbon nanotubes (CNTs), reduced graphene oxide (rGO)). No harsh reaction conditions were used in the method, as are used in conventional hydrothermal or high-temperature methods. The PDA unit acts as a non-covalent functionalizing agent for carbon, through stacking interactions, and also as a stabilizing agent for the formation of AuNPs. The CNTs/PDA/AuNPs modified electrode exhibited excellent electrocatalytic activity to oxidize chloramphenicol and the resulting sensor exhibited a low detection limit (36 nM), wide linear range (0.1-534 TM), good selectivity (against 5-fold excess levels of interferences), appreciable reproducibility (3.47%), good stability (94.7%), and practicality (recoveries 95.0%-98.4%). Likewise, rGO/PDA/AuNPs was used to fabricate a sensitive folic acid sensor, which exhibits excellent analytical parameters, including wide linear range (0.1-905 TM) and low detection limit (25 nM). The described synthetic route includes fast reaction time (5 min) and a readily available household microwave heating device, which has the potential to significantly contribute to the current state of the field.
Original language | English (US) |
---|---|
Journal | International journal of molecular sciences |
Volume | 21 |
Issue number | 8 |
DOIs | |
State | Published - Apr 1 2020 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-21ASJC Scopus subject areas
- Organic Chemistry
- Spectroscopy
- Molecular Biology
- Catalysis
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Computer Science Applications