Abstract
We study in this article the asymptotic performance of spectral clustering with inner product kernel for Gaussian mixture models of high dimension with numerous samples. As is now classical in large dimensional spectral analysis, we establish a phase transition phenomenon by which a minimum distance between the class means and covariances is required for clustering to be possible from the dominant eigenvectors. Beyond this phase transition, we evaluate the asymptotic content of the dominant eigenvectors thus allowing for a full characterization of clustering performance. However, a surprising finding is that in some particular scenarios, the phase transition does not occur and clustering can be achieved irrespective of the class means and covariances. This is evidenced here in the case of the mixture of two Gaussian datasets having the same means and arbitrary difference between covariances.
Original language | English (US) |
---|---|
Title of host publication | 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 2441-2445 |
Number of pages | 5 |
ISBN (Print) | 9781538646588 |
DOIs | |
State | Published - Sep 21 2018 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The work of R. Couillet and H. Tiomoko Ali is supported by the ANR Project RMT4GRAPH (ANR-14-CE28-0006)