Quasi-Epitaxial Growth of β-Ga2O3-Coated Wide Band Gap Semiconductor Tape for Flexible UV Photodetectors

Xiao Tang, Kuang-Hui Li, Yue Zhao, Yanxin Sui, Huili Liang, Zeng Liu, Che-Hao Liao, Wedyan Babatain, Rongyu Lin, Chuanju Wang, Yi Lu, Feras S. Alqatari, Zengxia Mei, Weihua Tang, Xiaohang Li

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The epitaxial growth of technically important β-Ga2O3 semiconductor thin films has not been realized on flexible substrates due to the limitations of high-temperature crystallization conditions and lattice-matching requirements. We demonstrate the epitaxial growth of β-Ga2O3(-201) thin films on flexible CeO2(001)-buffered Hastelloy tape. The results indicate that CeO2(001) has a small bi-axial lattice mismatch with β-Ga2O3(-201), inducing simultaneous double-domain epitaxial growth. Flexible photodetectors are fabricated on the epitaxial β-Ga2O3-coated tape. Measurements reveal that the photodetectors have a responsivity of 4 × 104 mA/W, with an on/off ratio reaching 1000 under 254 nm incident light and 5 V bias voltage. Such a photoelectrical performance is within the mainstream level of β-Ga2O3-based photodetectors using conventional rigid single-crystal substrates. More importantly, it remained robust against more than 20,000 bending test cycles. Moreover, the technique paves the way for the direct in situ epitaxial growth of other flexible oxide semiconductor devices in the future.
Original languageEnglish (US)
JournalACS Applied Materials & Interfaces
DOIs
StatePublished - Dec 22 2021

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Quasi-Epitaxial Growth of β-Ga2O3-Coated Wide Band Gap Semiconductor Tape for Flexible UV Photodetectors'. Together they form a unique fingerprint.

Cite this