Abstract
The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.
Original language | English (US) |
---|---|
Journal | Nature Communications |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Mar 22 2017 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: C.K. and M.M.S. gratefully acknowledge support from the King Abdullah University of Science and Technology (KAUST) and by its Academic Excellence Alliance (AEA) and Academic Partnership Program (APP). M.S.B. and M.M.S. acknowledge the support of the Medical Research Council, the Engineering and Physical Sciences Research Council, and the Biotechnology and Biological Sciences Research Council UK Regenerative Medicine Platform Hub ‘A Hub for Engineering and Exploiting the Stem Cell Niche’ (MR/K026666/1). M.M.S. also acknowledges support from a Wellcome Trust Senior Investigator Award (098411/Z/12/Z) for funding. M.S.B. acknowledges support from H2020 through the Individual Marie Skłodowska-Curie Fellowship ‘IMAGINE’ under grant agreement no. 701713. M.M.M. was supported by Marie Curie actions FP7 through the Intra-European Marie Curie Fellowship ‘Time to Mature’ under grant agreement no. 275005. S.C.S. acknowledges support from H2020 through the Individual Marie Skłodowska-Curie Fellowship ‘RADoTE’ under grant agreement no. 701664. S.C.S. was also supported from the Whitaker International Program, Institute of International Education, United States of America. M.M.S. also acknowledges the support from the ERC Seventh Framework Programme Consolidator grant “Naturale CG” under grant agreement no. 616417.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.