Abstract
There has been significant interest in “extreme” compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama-2 family models at 2 bits per parameter.
Original language | English (US) |
---|---|
State | Published - 2024 |
Event | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada Duration: Dec 9 2024 → Dec 15 2024 |
Conference
Conference | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 12/9/24 → 12/15/24 |
Bibliographical note
Publisher Copyright:© 2024 Neural information processing systems foundation. All rights reserved.
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing