Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides

Fanny de Busserolles, Fabio Cortesi, Jon Vidar Helvik, Wayne I. L. Davies, Rachel M. Templin, Robert K. P. Sullivan, Craig T. Michell, Jessica K. Mountford, Shaun P. Collin, Xabier Irigoien, Stein Kaartvedt, Justin Marshall

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.
Original languageEnglish (US)
Pages (from-to)eaao4709
JournalScience advances
Volume3
Issue number11
DOIs
StatePublished - Nov 8 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by King Abdullah University of Science and Technology, the Air Force Office of Scientific Research, and the Australian Research Council via grants awarded to J.M.; a Discovery Project grant (DP140102117) and Future Fellowship (FT110100176) awarded to W.I.L.D.; and a Linkage Infrastructure, Equipment and Facilities (LIEF) grant (LE100100074) awarded to the Queensland Brain Institute (Neurolucida software). F.C. was supported by a Swiss National Science Foundation Early Postdoctoral Mobility Fellowship (165364) and a University of Queensland Development Fellowship. J.V.H. was supported by a start-up grant from the University of Bergen.

Fingerprint

Dive into the research topics of 'Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides'. Together they form a unique fingerprint.

Cite this