Prospects and challenges of applied genomic selection—a new paradigm in breeding for grain yield in bread wheat

Philomin Juliana, Ravi P. Singh, Jesse Poland, Suchismita Mondal, José Crossa, Osval A. Montesinos-López, Susanne Dreisigacker, Paulino Pérez-Rodríguez, Julio Huerta-Espino, Leonardo Crespo-Herrera, Velu Govindan

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Genomic selection (GS) has been promising for increasing genetic gains in several species. Therefore, we evaluated the potential integration of GS for grain yield (GY) in bread wheat (Triticum aestivum L.) in CIMMYT’s elite yield trial nurseries. We observed that the genomic prediction accuracies within nurseries (0.44 and 0.35) were substantially higher than across-nursery accuracies (0.15 and 0.05) for GY evaluated in the bed and flat planting systems, respectively. The accuracies from using only a subset of 251 genotyping-by-sequencing markers were comparable to the accuracies using all 2038 markers. We also used the item-based collaborative filtering approach for incorporating other related traits in predicting GY and observed that it outperformed genomic predictions across nurseries, but was less predictive when trait correlations with GY were low. Furthermore, we compared GS and phenotypic selections (PS) and observed that at a selection intensity of 0.5, GS could select a maximum of 70.9 and 61.5% of the top lines and discard 71.5 and 60.5% of the poor lines selected or discarded by PS within and across nurseries, respectively. Comparisons of GS and pedigree-based predictions revealed that the advantage of GS over the pedigree was moderate in populations without full-sibs. However, GS was less advantageous for within-family selections in elite families with few full-sibs and minimal Mendelian sampling variance. Overall, our results demonstrate the importance of applying GS for GY at the appropriate stage of the breeding cycle, and we speculate that gains can be maximized if it is implemented in early-generation within-family selections.
Original languageEnglish (US)
JournalPlant Genome
Volume11
DOIs
StatePublished - Jan 1 2018
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

ASJC Scopus subject areas

  • Genetics
  • Agronomy and Crop Science
  • Plant Science

Fingerprint

Dive into the research topics of 'Prospects and challenges of applied genomic selection—a new paradigm in breeding for grain yield in bread wheat'. Together they form a unique fingerprint.

Cite this