Abstract
The reflection effect is unavoidable when taking photos through glasses or other transparent materials, which introduces undesired information into pictures. Hence, removing the influence of reflection becomes a key problem in computer vision. One of the main obstacles of recent learning based approaches is the lacking of realistic training data. To address this issue, we introduce a new dataset synthesis method as well as a novel neural network architecture for single image reflection removal. First, we make use of the polarization characteristics of light into the synthesis of datasets, so as to obtain more realistic and diversified training dataset POL. Then, we design a novel Progressive Polarization based Reflection Removal Network (P2R2Net), which preliminary estimates the coarse background layer to guide the final reflection removal. We demonstrate that our method performs better than the state-of-the-art single image reflection removal methods through quantitative and qualitative experimental comparisons. Specifically, the average PSNR of our restored images selected from three representative benchmark datesets: “Real20”, “SIR2” and “Nature” is improved at least 0.49 compared with existing methods and reaches to 24.52.
Original language | English (US) |
---|---|
Pages (from-to) | 108497 |
Journal | Pattern Recognition |
Volume | 124 |
DOIs | |
State | Published - Dec 11 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2022-01-27Acknowledgements: This work was supported by the National Key R&D Program of China (2019YFB2204104), the National Natural Science Foundation of China (62102414, 62172415, 62071157), and the Alibaba Group through Alibaba Innovative Research Program.
ASJC Scopus subject areas
- Artificial Intelligence
- Signal Processing
- Software
- Computer Vision and Pattern Recognition