Progressive polarization based reflection removal via realistic training data generation

Youxin Pang, Mengke Yuan, Qiang Fu, Peiran Ren, Dong Ming Yan

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The reflection effect is unavoidable when taking photos through glasses or other transparent materials, which introduces undesired information into pictures. Hence, removing the influence of reflection becomes a key problem in computer vision. One of the main obstacles of recent learning based approaches is the lacking of realistic training data. To address this issue, we introduce a new dataset synthesis method as well as a novel neural network architecture for single image reflection removal. First, we make use of the polarization characteristics of light into the synthesis of datasets, so as to obtain more realistic and diversified training dataset POL. Then, we design a novel Progressive Polarization based Reflection Removal Network (P2R2Net), which preliminary estimates the coarse background layer to guide the final reflection removal. We demonstrate that our method performs better than the state-of-the-art single image reflection removal methods through quantitative and qualitative experimental comparisons. Specifically, the average PSNR of our restored images selected from three representative benchmark datesets: “Real20”, “SIR2” and “Nature” is improved at least 0.49 compared with existing methods and reaches to 24.52.
Original languageEnglish (US)
Pages (from-to)108497
JournalPattern Recognition
Volume124
DOIs
StatePublished - Dec 11 2021

ASJC Scopus subject areas

  • Artificial Intelligence
  • Signal Processing
  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Progressive polarization based reflection removal via realistic training data generation'. Together they form a unique fingerprint.

Cite this