Production of a complete set of wheat–barley group-7 chromosome recombinants with increased grain β-glucan content

Tatiana V. Danilova, Jesse Poland, Bernd Friebe

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Key message: Wheat–barley group-7 recombinant chromosomes were selected using molecular cytogenetics and SNP markers; increased grain β-glucan content was observed in wheat plants with two and four copies of HvCslF6. Abstract: The soluble dietary fiber (1–3)(1–4) mixed linked β-d-glucan from cereal grains is a valuable component of a healthy diet, which reduces risks of coronary disease and diabetes. Although wheat is an important cereal crop providing a substantial portion of daily calories and protein intake in the human diet, it has a low level of β-glucan. Owing to the plasticity of the polyploid wheat genome, agronomically important traits absent in the wheat primary gene pool can be introgressed from distant relatives. Barley (Hordeum vulgare L.) has a high grain β-glucan content. Earlier, we introgressed this trait into wheat in the form of whole arm compensating Robertsonian translocations (RobT) involving group-7 chromosomes of barley and all three sub-genomes of hexaploid wheat (Triticum aestivum L). In the presented research, we shortened the barley 7HL arms in these RobTs to small pericentromeric segments, using induced wheat–barley homoeologous recombination. The recombinants were selected using SNP markers and molecular cytogenetics. Plants, comprising barley cellulose synthase-like F6 gene (HvCslF6), responsible for β-glucan synthesis, had a higher grain β-glucan content than the wheat control. Three wheat–barley group-7 recombinant chromosomes involving the A, B and D sub-genomes laid the basis for a multiple-copy gene introgression to hexaploid wheat. It is hypothesized that further increases in the β-glucan content in wheat grain can be obtained by increasing the number of HvCslF6 copies through combining several recombinant chromosomes in one line. The wheat lines with four copies of HvCslF6 exceeded the β-glucan content of the lines with two copies.
Original languageEnglish (US)
Pages (from-to)3129-3141
Number of pages13
JournalTheoretical and Applied Genetics
Volume132
Issue number11
DOIs
StatePublished - Nov 1 2019
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Agronomy and Crop Science
  • Biotechnology

Cite this