TY - JOUR
T1 - Probabilistic topic models
AU - Blei, David
AU - Carin, Lawrence
AU - Dunson, David
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-09
PY - 2010/1/1
Y1 - 2010/1/1
N2 - In this article, we review probabilistic topic models: graphical models that can be used to summarize a large collection of documents with a smaller number of distributions over words. Those distributions are called ¿topics¿ because, when fit to data, they capture the salient themes that run through the collection. We describe both finite-dimensional parametric topic models and their Bayesian nonparametric counterparts, which are based on the hierarchical Dirichlet process (HDP). We discuss two extensions of topic models to time-series data¿one that lets the topics slowly change over time and one that lets the assumed prevalence of the topics change. Finally, we illustrate the application of topic models to nontext data, summarizing some recent research results in image analysis. © 2010 IEEE.
AB - In this article, we review probabilistic topic models: graphical models that can be used to summarize a large collection of documents with a smaller number of distributions over words. Those distributions are called ¿topics¿ because, when fit to data, they capture the salient themes that run through the collection. We describe both finite-dimensional parametric topic models and their Bayesian nonparametric counterparts, which are based on the hierarchical Dirichlet process (HDP). We discuss two extensions of topic models to time-series data¿one that lets the topics slowly change over time and one that lets the assumed prevalence of the topics change. Finally, we illustrate the application of topic models to nontext data, summarizing some recent research results in image analysis. © 2010 IEEE.
UR - http://ieeexplore.ieee.org/document/5563111/
UR - http://www.scopus.com/inward/record.url?scp=85032751708&partnerID=8YFLogxK
U2 - 10.1109/MSP.2010.938079
DO - 10.1109/MSP.2010.938079
M3 - Article
SN - 1053-5888
VL - 27
SP - 55
EP - 65
JO - IEEE Signal Processing Magazine
JF - IEEE Signal Processing Magazine
IS - 6
ER -