Printed Organic and Inorganic Electronics: Devices To Systems

Galo T. Sevilla, Muhammad Mustafa Hussain

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electronics. Still some fundamental challenges remain: thermal instability, modest charge transport characteristics, and limited lithographic resolution. In the last decade, one-dimensional nanotubes and nanowires, like carbon nanotubes and silicon nanowires, followed by two-dimensional materials, like graphene and transitional dichalcogenide materials, have shown interesting promise as next-generation printed electronic materials. Challenges, such as non-uniformity in growth, limited scalability, and integration issues, need to be resolved for the viable application of these materials to technology. Recently, the concept of printed high-performance complementary metal\text-oxide semiconductor electronics has also emerged and been proven successful for application to electronics. Here, we review progress in CMOS technology and applications, including challenges faced and opportunities revealed.
Original languageEnglish (US)
Pages (from-to)147-160
Number of pages14
JournalIEEE Journal on Emerging and Selected Topics in Circuits and Systems
Volume7
Issue number1
DOIs
StatePublished - Nov 11 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to acknowledge proof reading by S. J. Velling of University of Waterloo, ON, Canada, and C. Unck of KAUST

Fingerprint

Dive into the research topics of 'Printed Organic and Inorganic Electronics: Devices To Systems'. Together they form a unique fingerprint.

Cite this