Abstract
Traveltime tomography with shot-based eikonal equation fixes shot positions then relies on inversion to resolve any contradicting information between independent shots and achieve a possible cost-function minimum. On the other hand, the double-square-root (DSR) eikonal equation that describes the whole survey, while providing the same first-arrival travel-times, allows not only the receivers but also the shots to change position and therefore leads to faster convergence in tomo-graphic inversion. The DSR eikonal equation can be solved by a version of the fast-marching method (FMM) with special treatment for its singularity at horizontally traveling waves. For inversion, we use an upwind finite-difference scheme and the adjoint-state method to avoid explicit calculation of Fréchet derivatives. The proposed method generalizes to the 3D case straightforwardly.
Original language | English (US) |
---|---|
Title of host publication | SEG Technical Program Expanded Abstracts 2012 |
Publisher | Society of Exploration Geophysicists |
Pages | 4330-4335 |
Number of pages | 6 |
ISBN (Print) | 9781622769452 |
DOIs | |
State | Published - Oct 25 2012 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The work was supported by Saudi Aramco and KAUST. Wethank Tariq Alkhalifah and Tim Keho for useful discussions.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.