Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis

Yue Zhang, Wagdi G (Ed) Habashi, Rooh Ul Amin Khurram

Research output: Contribution to journalArticlepeer-review

75 Scopus citations


This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric boundary layer is modeled with an artificial inflow turbulence generation method. Then, the turbulent flow is simulated by the second mode of a Zonal Detached-Eddy Simulation, and a conservative quadrature-projection scheme is adopted to transfer unsteady loads from fluid to structural nodes. The aerodynamic damping that represents the fluid-structure interaction mechanism is determined by empirical functions extracted from wind tunnel experiments. Eventually, the flow solutions and the structural responses in terms of mean and root mean square quantities are compared with experimental measurements, over a wide range of reduced velocities. The significance of turbulent inflow conditions and aeroelastic effects is highlighted. The current methodology provides predictions of good accuracy and can be considered as a preliminary design tool to evaluate the unsteady wind effects on tall buildings.
Original languageEnglish (US)
Pages (from-to)165-179
Number of pages15
JournalJournal of Wind Engineering and Industrial Aerodynamics
StatePublished - Jan 2015

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering
  • Renewable Energy, Sustainability and the Environment


Dive into the research topics of 'Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis'. Together they form a unique fingerprint.

Cite this