Predicting Anaerobic Membrane Bioreactor Performance Using Flow-Cytometry-Derived High and Low Nucleic Acid Content Cells

Hong Cheng*, Julie Sanchez Medina, Jianqiang Zhou, Eduardo Machado Pinho, Rui Meng, Liuwei Wang, Qiang He, Xosé Anxelu G. Morán, Julie Sanchez Medina

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t - 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.

Original languageEnglish (US)
Pages (from-to)2360-2372
Number of pages13
JournalEnvironmental Science and Technology
Volume58
Issue number5
DOIs
StatePublished - Feb 6 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

Keywords

  • anaerobic membrane bioreactor
  • flow cytometry
  • HNA and LNA cells
  • microbial diversity
  • predictive model

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Predicting Anaerobic Membrane Bioreactor Performance Using Flow-Cytometry-Derived High and Low Nucleic Acid Content Cells'. Together they form a unique fingerprint.

Cite this