Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou*, Maria Skoularidou*, Konstantina Palla*, Laurence Aitchison, Julyan Arbel, David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A. Osborne, Tim G.J. RudnerDavid Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, Ruqi Zhang

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective reveals a multitude of overlooked metrics, tasks, and data types, such as uncertainty, active and continual learning, and scientific data, that demand attention. Bayesian deep learning (BDL) constitutes a promising avenue, offering advantages across these diverse settings. This paper posits that BDL can elevate the capabilities of deep learning. It revisits the strengths of BDL, acknowledges existing challenges, and highlights some exciting research avenues aimed at addressing these obstacles. Looking ahead, the discussion focuses on possible ways to combine large-scale foundation models with BDL to unlock their full potential.

Original languageEnglish (US)
Pages39556-39586
Number of pages31
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

Conference

Conference41st International Conference on Machine Learning, ICML 2024
Country/TerritoryAustria
CityVienna
Period07/21/2407/27/24

Bibliographical note

Publisher Copyright:
Copyright 2024 by the author(s)

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI'. Together they form a unique fingerprint.

Cite this