Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation

Patrick S. Nugent, Youssef Belmabkhout, Stephen D. Burd, Amy Cairns, Ryan Luebke, Katherine A. Forrest, Tony T. Pham, Shengqian Ma, Brian Space, Łukasz Wojtas, Mohamed Eddaoudi, Michael J. Zaworotko

Research output: Contribution to journalArticlepeer-review

1937 Scopus citations


The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases; in addition to its involvement in climate change, CO 2 is an impurity in natural gas, biogas (natural gas produced from biomass), syngas (CO/H 2, the main source of hydrogen in refineries) and many other gas streams. In the context of porous crystalline materials that can exploit both equilibrium and kinetic selectivity, size selectivity and targeted molecular recognition are attractive characteristics for CO 2 separation and capture, as exemplified by zeolites 5A and 13X (ref. 2), as well as metal-organic materials (MOMs). Here we report that a crystal engineering or reticular chemistry strategy that controls pore functionality and size in a series of MOMs with coordinately saturated metal centres and periodically arrayed hexafluorosilicate (SiF 6 2-) anions enables a 'sweet spot' of kinetics and thermodynamics that offers high volumetric uptake at low CO2 partial pressure (less than 0.15 bar). Most importantly, such MOMs offer an unprecedented CO 2 sorption selectivity over N2, H 2 and CH 4, even in the presence of moisture. These MOMs are therefore relevant to CO2 separation in the context of post-combustion (flue gas, CO2/N2), pre-combustion (shifted synthesis gas stream, CO 2/H 2) and natural gas upgrading (natural gas clean-up, CO2/CH 4). © 2013 Macmillan Publishers Limited. All rights reserved.
Original languageEnglish (US)
Pages (from-to)80-84
Number of pages5
Issue number7439
StatePublished - Feb 27 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): FIC/2010/06
Acknowledgements: This publication is based on work supported by KAUST award number FIC/2010/06 (ME. and M.J.Z.) and KAUST start up funds (RE.). B.S. acknowledges computational resources made available by an XSEDE grant (number TG-DMR090028). Single-crystal diffraction experiments on SIFSIX-2-Cu-I were conducted at the Advanced Photon Source on beamline 15ID-B of ChemMatCARS Sector 15, which is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357.

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation'. Together they form a unique fingerprint.

Cite this