Pore fabrication in various silica-based nanoparticles by controlled etching

Lan Zhao, Yunfeng Zhao, Yu Han

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated γ-Fe 2O 3 nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals. © 2010 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)11784-11789
Number of pages6
JournalLangmuir
Volume26
Issue number14
DOIs
StatePublished - Jul 20 2010

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work is supported by the collaborative travel fund (CTF) from King Abdullah University of Science and Technology (KAUST).

ASJC Scopus subject areas

  • Spectroscopy
  • General Materials Science
  • Surfaces and Interfaces
  • Electrochemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Pore fabrication in various silica-based nanoparticles by controlled etching'. Together they form a unique fingerprint.

Cite this