Abstract
A one-pot, two-step protocol for the direct synthesis of polyurethanes containing few carbonate linkages through polycondensation of diamines, dihalides, and CO2 in the presence of Cs2CO3 and tetrabutylammonium bromide is described. The conditions were optimized by studying the polycondensation of CO2 with 1,6-hexanediamine and 1,4-dibromobutane as model monomers. Then, various diamines and dihalides were tested under optimal conditions. Miscellaneous samples of such carbonate-containing polyurethanes exhibiting molar masses from 6000 to 22 000 g/mol (GPC) and yields higher than 85% were obtained. The thermal properties of such polyurethanes were unveiled by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA): they were found very similar to those of traditional polyurethanes obtained by diisocyanates + diols polycondensation.
Original language | English (US) |
---|---|
Pages (from-to) | 2320-2328 |
Number of pages | 9 |
Journal | Macromolecules |
Volume | 50 |
Issue number | 6 |
DOIs | |
State | Published - Mar 9 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): BAS/1/1374-01-01
Acknowledgements: This research work is supported by KAUST under baseline funding (BAS/1/1374-01-01).